Designing an Effective Poster Naomi Peck #### Instructions #### lmagine you're at a poster session. Use the thumbs up/down reactions to indicate whether you'd approach the poster. Use the heart reaction if you enjoy the poster design. Figure 4 Figure 4. M5 spectrum resulted in the identification of amstoblastin (*) and amelogenin (+) peptides in a porcine enamel sample obtained by the restricted area etching procedure directly submitted to mass spectrometry without protein separation in an SDS-PAGE gel). samples with enough proteins to produce a good MS signal Furthermore, the 5-minute etching resulted in the removal of a 13.4 µm layer of superficial enamel, corresponding to 0.23 mg of enamel. EDTA was not as effective as HCI for production of enamel samples. As expected, the longer exposures to acid will result in the removal of enamel from deeper layers, and different time periods can be employed depending on the desired amount of enamel. Additionally, successive acid attacks can be used to remove deeper layers. #### Results Figures 3-5 show mass spec results of peptides whose search against a protein database rendered results that indicate successful identification of peptides that are specific to enamel. Fig. 5. MS analysis of mature kumen leeth: A) MS spectrum of enamed powder of mature hüman teeth stitalized by TCA precipitation The eamples were not separated by 505-PAGE, but directly prepared for M3. Three Amelogemin -E Incheses tryptic popfiden were identified By Mess agectrum of CID-MS/MS of ion reta 1307,62 td the amalogunic pejilite. which allowed deduction of the amino acid evquence the aircine acid. WYYGSRPPYP of an amelogenes - X ## Figure 6. Schematic illustration of techniques used in this study. Left Sequence: The enamel powder is dissolved and precipitated by TCA. Middle Sequence: whole crown etching by HCI 18% for 5 min. Right Sequence: The restricted area etching (so far effective for protein recovery from Immature porcine teeth). enamel extracted from Some samples were run on gals, some were directly prepared for Mas Spectrometry 2.3. Mass Spectrometry of samples using matrix assisted laser description/ionization – time- of- flight mass spectrometer (MALDI-TOF followed by protein search against the database SWISS-PROT. Mentimeter 💹 #### Results Figures 1-2 show gel electrophoresis of enamel proteins extracted by the conventional method (Fig. 1) and by the superficial etching method PAGUIN I Figure 1. Educated and PAGE profess profits of transce Stature booth Late 1 implecular weight marker, Later 37 professes accretion from howers bettle (with regulars analyse) by whole crown adding with 11.2% EDTA for 5 min. Figure 2. Rinar elained SDS-PACE pressin profits of probables postern bodi. Lore 5 materiales weight morbe-Lore 2 3 and 6 harmon burn lives different postern both porce. Sends A. popper Sequeptioling resided in the simulfication of expension and belowin Store Works Sales Send III allowed was risestified in the boost, based C ampliques was standflast in this based. #### Figure 4 Figure 4. MS spectrum resulted in the identification of ameloblastin (*) and erum (+) beheiner itt w boscine it restricted area etching procedure directly submitted to mass spectrometry (without protein separation in an SDS-PAGE gel). #### Single-cell dissection of Alzheimer's Disease Premise, Overview Multi-Region, Modules Microglia, Vasculature scATAC, GWAS, TFs, Genomic medicine: challenge and promises #### Picower Institute for Learning and Memory Broad Institute of MIT and Harvard Personalized medicine he challenge of mechanism Causal variant not known = 5/2/2 5. Integrate data to predict drive genes, regions, cell types FOR THE WORLD WINDS A DESCRIPTION OF THE REAL PROPERTY. · All cell types affected · Female ta burden Across cell types (n=124) Single-cell AD dissection: sex diffs, early/late, myelin/WML Non-coding circuitry helps interpret disease loci driver with this interest this . Ollego genetici revegis. cross traits (N=12, each ~48) 90+% disease hits non-coding Relevant pathways not know Mechanism not known particular. These photos are available to the public via the internet. In this poster, I present and discuss numerous examples of insect/arthropod-like forms (fossil & living) found in Mars rover photos. Examples include insect-like forms displaying apparent diversity, clearly recognizable insect/arthropod anatomical features, and flight. Evidence of a fossil reptile-like (serpentine) form as well as apparent living reptile-like forms preying on insect-like forms is also presented. Each example is documented. These findings provide a compelling basis for further study and raise many important questions. (DOI: 10.13140/RG.2.2.11836.39041) #### INTRODUCTION Interest in the possibility of life on Mars (Dass, 2017), a desire to find useful resources for technology, possible colonization (Levine & Schild, 2010), and a great sense of adventure has stimulated research and development in regard to reaching Mars. Accordingly, earlier projects involved placing spacecraft in orbit around Mars to send back photos of the Martian surface. More recently, unmanned vehicles have been sent to land on the Martian surface to relay images of the surroundings back to Earth and to collect information about the surface and from shallow drill holes. Onboard instrumentation has tested for evidence of past and present life via indicators of organic activity, namely "biosignatures" (Cady et al., 2004; Levin, 2019). Another approach has been to seek out and analyze the structural, physiological, and biochemical adaptations of Terran organisms that are able to live under extreme environmental conditions, that is "extremophiles" (Merino et al. 2019,). This approach has been almost entirely focused on microbes, though metazoans, e.g. tardigrades, and some insects and reptiles have been found in extreme habitats on Earth. My intent in this poster is to present evidence of fossil and living insect- and reptile-like forms on Mars. A few of many findings are included and additional results will be published soon. Repeatability and corroboration are among the hallmarks of the scientific method and as it is likely that at least some NASA/JPL personnel are acquainted with Martian insect- and reptile-like creatures, the research reported here can reasonably be viewed as replicative and corroborative. The arthropod body plan with repeating body segments, a typically tough, resilient exoskeleton, along with a high degree of physiological and biochemical adaptability are among the characteristics that make members of this group prime candidates for thriving under harsh environmental conditions. Likewise Terran reptiles are commonly found in extreme environments. Based on preliminary examination of Mars rover photographs, I formulated the following broad, hypothesis as the basis for the research reported here: There are fossilized and living forms on Mars, including insect/arthropod- and reptile-like forms. #### **MATERIALS & METHODS** The NASA-JPL images relayed to Earth by land-based vehicles ("rovers"), sent to Mars via spacecraft are available to the public on the internet. This database of photos, both raw images and compiled panoramic mosaics, that has been collected over many years by several different missions has been used in this study, mostly from Curiosity rover (NASA/JPL). Individual images were carefully studied while varying photographic parameters such as brightness, contrast, saturation, inversion, and so on. No content was added, or removed. The following criteria were useful in identifying life forms: dramatic departure from the surroundings, clarity of form, body symmetry, segmentation of body parts, repeating form, skeletal remains, and observation of forms in close proximity to one another. Particular postures, evidence of motion, flight, apparent interaction as suggested by relative positions, and shiny eyes were taken to be consistent with the presence of living forms. Once a clear image of a given form was identified and described, it was useful in facilitating recognition of other less clear, but none-the-less valid, images of the same basic form. The descriptions and interpretations of images are somewhat tentative, and may well change with more study and as knowledge of Martian fauna increases. I encourage you to check my findings for yourself. The URLs of the photos used will be listed on my website, scienceofentomology.com and in formal publication of this material in the future #### RESULTS It appears that the "Red Planet" enjoys a surprising abundance of higher life forms. An exoskeleton and jointed appendages are sufficient to establish identification as an arthropod (Romoser & Stoffolano, 1995). Three body regions, a single pair of antennae, and six legs are traditionally sufficient to establish identification as "insect" on Earth. These characteristics should likewise be valid to identify an organism on Mars as insect-like. On these bases arthropodan insect-like, forms can be seen in the Mars rover photos. Many insect-like creatures and putative diversity were observed (Plate 1). The most common insect-like forms are robust and loosely resemble bumble bees or carpenter bees on Earth. For convenience, with no taxon necessarily implied, I'll refer to these creatures as "bees" from this point on. The "bees" appear to vary in size and type. Several characteristic insect/arthropod anatomical features were identifiable (Plate 2), not all on the same individual, but as a mosaic among individuals. Distinct flight behavior was evident in many images, e.g. Plates 3 & 4. In one case observed, the flight manuever was impressive with the individual "bee" plunging straight down the side of a cliff and leveling off just before hitting the ground (Plate 4). Plate 2. Various anatomical structures seen in different photos. A - E and probably F are "beelike", but not necessarily the same type. (A & B) A specimen whose head appears to have turned in the direction of the camera (based on the scale provided in the photo from which this was extracted, this individual is estimated to be approximately 20 inches long). (C) Abdomen of specimen from "a." (D) Individual on ground with head facing left with head & thorax visible. (E) Individual flying with legs evident and, though in flight, somewhat comparable to the specimen in D; Compound eyes and hindlegs labeled in two positions since in motion. Relative to D & E, the locations, shapes, sizes, and appearance of the legs suggest that the foreigs, with putative distal chelate structures, are grasping; the midlegs, digging: and the hindlegs, jumping & running. (F) Specimen on ground with wing(s) toward the right. Longitudinal veins, cross veins, and wing cells evident. (G) Part of wing of specimen apparently caught on the rover: inset: enlarged portion of wing. Longitudinal veins, cross veins, and cells are evident. Plate 3. Insect-like forms in flight. (A) At least two apparent insect-like creatures flying close to one another. (B) Putative insect-like forms in a darkening sky. (C & D) Extracts from "b" with evidence of wings beating (light spots encircling the dark bodies). (E) An insect-like specimen ("bee") that appears to have flown right to left from what could be a cave or an entrance to the underground. (F) Two putative insect-like specimens in flight contrasted with the darkening sky; Insert: enlarged view. Plate 5. (A) Frontal view of a putative reptile-like fossil compared to a Terran snake. 1. Frontal view of putative fossil (circled) in a debris field. 2. Enlarged frontal view of fossil. 3. Midline symmetry indicated. 4. Eyes and small oral opening circled. 5. Bilateral punctate structures indicated. 6. large, full-gape, oral opening. 7. Eyes, lateral punctate structures, and large mouth capable of gaping are indicated. 8. Frontal view of Eastern King Snake head (Original photo). 9. King snake with eyes and bilateral punctate structures circled. (B) Putative fossil insect on its dorsum with head to the top, and with selected structures labelled. (C & D) Apparent predatory behavior showing reptile-like creature with insect-like creature in its mouth. #### CONCLUSIONS Evidence presented here supports the following: There are fossilized insect- and reptile-like forms on Mars. There are extant insect- and reptile-like forms on Mars. There has been and still is life on Mars. The presence of wing veins and spiracles are consistent with tracheal ventilation. There is apparent diversity among the Martian insect-like fauna which display many features similar to Terran insects that are interpreted as advanced groups, for example the presence wings, wing flexion, agile gliding/flight, and variously structured leg elements. Sheltering and nesting of the insect-like forms in caves and possibly burrows beneath the surface are consistent with life in a harsh and variable environment. Insect-like Martian forms appear to be preyed upon by reptile-like forms. #### DISCUSSION To my knowledge, aside from circumstantial evidence presented in the literature (Levin, 2019), the meaning of which is debated among astrobiologists, this is the first professional report of direct evidence of identifiable life forms beyond the confines of Earth. While any given image does not in itself prove anything, I believe the mosaic of what I have described is compelling. And as stated above, I view the research reported here to be replicative and corroborative. It is very clear that much more study of the photos is needed. The information presented here barely scratches the Given our current understanding of the fundamental ways living organisms function, and the putative patterns of the evolution of life on Earth, I would guess that most biologists have expected to find life on other planets, and would not be particularly surprised to find carbon-based biological processes/mechanisms as well as similarities in patterns and interactions at the various levels of organization. This is not to say there couldn't be other-than-carbon systems operating as well. I also think we can logically expect to find evidence of the operation of evolution and natural selection. Discussions pertinent to these ideas include the following: Sephton & Carter, 2015; Cabrol & Grin, 2018. The presence of higher metazoan organisms on Mars implies the presence of nutrient/energy sources and processes, food chains and webs, and water as elements functioning in a viable, if extreme, ecological setting sufficient to sustain life. I have observed instances suggestive of standing water or small water courses with evident meander and with the expected blurring of small submerged rocks, larger emergent rocks at the atmosphere/water interface moist bank area, and a drier area beyond the moist area. Water on Mars has been reported a number of times (Rothschild and Mancinelli, 2001), including surface water detected by instrumentation on Viking, Pathfinder, Phoenix The question that looms especially large at this point is consideration of how life forms reach a given planet (or any cosmic body), that is the question of origin(s) of life. Stated in terms of this research, did life originate arth and Mars independently; or did it originate on either Mars or Earth and find its way to the other; or finally or way to these planets from elsewhere in our solar system, galaxy, or beyond? Hopefully the findings reported here will enter into the exciting discussions of panspermia (Crick, 1981; Russell et al., 2011; Jour Cosmology om, 2010; Kaufman, 2017). The evidence of life on Mars presented here provides a strong basis for many additional important biological as well as social and political questions. It also represents a solid justification for further study. A recent book published by the National Academies of Sciences, Engineering, and Medicine (2019) looks to the future of astrobiology and maboration ¹UK Astronomy Technology Centre, ²University of Hertfordshire, ³University of Oslo To obtain a complete census of dust in galaxies across cosmic history, we require a high throughput survey facility that can reach high sensitivities and resolutions – a necessary complement to high-resolution interferometric observatories such as ALMA. The Atacama Large Aperture Submillimetre Telescope (AtLAST), a concept for a 50 m single dish community facility to be built in the 2030s, will be able to photometrically and spectroscopically survey large areas at high resolutions, pushing the confusion limit to sub-mJy levels and enabling the detections of "normal" ($L\star$) galaxies to very high redshifts. #### FIRST LIGHT INSTRUMENTATION GOALS: - A highly multiplexed (~1000 pixel) heterodyne array [2] - · Wide field, multi-chroic continuum camera - + Wide band IFU [3] - Multi object spectrograph #### THE SURVEY SCIENCE POTENTIAL OF A "SUB-MM SDSS" WITH ATLAST: - Perform a complete census of star-forming galaxies at high-z to sub-L★ luminosities - Reveal the production and evolution of metals in the Universe, as tracked by the dusty ISM - Determine the evolution of the co-moving H2 mass density - Investigate the astrophysics governing star formation efficiency and ISM chemistry - Chart the growth of large scale structure at the epochs of galaxy assembly - Detect baryonic acoustic oscillations beyond z ≥ 2 The figure shows the SED of a star-forming galaxy redshifted through z=1 to z=10, a 2 Gyr timespan from the formation of the first galaxies to cosmic noon. The shaded area shows the wavelength range of AtLAST observations: the wealth of spectral features in this regime will allow the measurement of spectroscopic redshifts for hundreds of thousands of star-forming galaxies. The black point shows the directly detected 870 μ m continuum emission of an optically-selected Lyman-break galaxy at z=3 with a UV+IR SFR of 35 M_{\odot} yr⁻¹: AtLAST's synergies with facilities like LSST will allow multi-wavelength, in-depth study of galaxy physics and chemistry on unprecedented scales. Figure from [1] #### DEFINING THE SCIENCE CASES: GET INVOLVED! We are in the first year of a 3-year Horizon2020 funded design study for AtLAST, currently compiling science use cases from the community and open to new collaborators. What transformational science could you do with this facility? Let us know! **Mentime** Find out more at <u>atlast.uio.no</u> or email: joanna.ramasawmy@stfc.ac.uk, pa or email: joanna.ramasawmy@stfc.ac.uk, pamela.klaassen@stfc.ac.uk or message me, Jo Ramasawmy, during the poster/coffee sessions! #### WHAT HAPPENS WHEN YOU INSERT YOURSELF INTO A [TED] STORY? ¹-MacKrill et al., 2021. What makes an idea worth spreading? Language markers of popularity in TED talks by academics and other speakers. JASIST DOI: 10.1002/ASI.24471 #### Intro 10,000+ posters presented every year All use the same 'wall of text' template Increasing the knowledge transfer speed of the common template could speed insight Audiscovery across science. #### Methods Negative space it large main takeaway is helps people quickly find signal in the noise 1-4min of additional detail (away from presenter's personal spece). You can add an optional 'cheat sheet' right sidebar for extra figures and tables. #### Results - Early feedback from people who've used it is extremely positive, including 6 people who won poster awards. - *Others have reported more & deeper attender engagement (better questions). - •We're planning a formal validation study. - You probably mad this summary in less than 2 minutes. - *Nowyou have time left to go read other posters (cyal). #### THEORY This poster layout could communicate findings more quickly. Mike Watch the Cartoon Andustry Templatry) **Mentimeter** ### Which poster did you think was most effective? #### Which poster did you think was the most effective? ## Posters are ## not papers. #### What is the purpose of a poster? To give a quick overview of a project To inform while being appealing The purpose is to grab the viewer's attention while giving adequate information about your research. Conveying the main ideas of your research, focusing on results and not so much on literature and what has been done already Prompt questions and discussions about the project, elicit feedback over procedures and plans Give a first impression of a project to raise interest in it and bring people into a conversation about it Inform others about your research project To give basic information, no details To present a project in a way, that you get to discuss about it with other people ## Posters create conversations. #### Effective posters are - clear - -> consise - carefully designed - catchy # Think of your audience. #### BETTER POSTERS Plan, Design, and Present an Academic Poster **ZEN FAULKES** The amount of effort that people need to put in to getting information changes its relevance for them. - Faulkes 2021:30 #### Keep the title short and sharp. Share the main point of your poster with a sentence as your title. Create a headline! ## Write less, ## edit more. #### Rules of Graphic Design - repetition - alignment - contrast - proximity ## You will read this first And then you will read this Then this one @LaurelCoons #### BILLBOARD ZONE HOT ZONE PRIME REAL ESTATE - EYE LEVEL TAKE HOME DEAD FINE PRINT ZONE #### Ideas without images are forgotten. - Wurman 2001 #### Visualisation - → LATCH - → 5W+2H - Contrast - Guide #### For font's sake, limit your typefaces. Applying lots of fonts not only makes your design hard to read, but what's even harder is finding ones which will actually look good together. ## The bigger, the better. #### Let your poster breathe. #### Accessibility - Big text - Colourblind-friendly - Sans-serif fonts - High contrast #### Instructions species boundaries iversity in the genus ♣ PRESENTER. >>> user Babb-Biernacki #### INTRO: Character ! Pneumocystis species? This genus of mammalian lung parasites, found in every mammal species tested, can give us insight into host-parasite speciation dynamics at different scales. It has been assumed that there is one Pneumocystis species for every mammal on Earth, but only five species have been described, and true species boundaries are not known. Understanding how parasite species boundaries correspond to their hosts can give us insight into their ecology and potential for host switching, but this cannot be done until more species are described and species boundaries are understood. #### **METHODS** - Collected mtLSU and mtSSU sequences from GenBank - 2. Inferred ultrametric tree using BEAST - Molecular species delimitation: ABGD, GMYC, PTP, and BPP predict Pneumocystis species boundaries and how many host species they can persist in - Used host: parasite ratio to predict number of Pneumocystis species in existence #### RESULTS - Pneumocystis specificity is likely less strict than the assumed 1:1 ratio. One Pneumocystis species can often infect an entire mammal genus. - 5 species have been described, and we likely have 4,000 to 5,500 to go. In Pneumocystis, molecular species delimitation supports host specificity mediated by geography. We predict 4,000 to 5,500 undescribed species. Tip labels represent the host from which a Pneumocystis sample was collected. Gray boxes represent predicted Pneumocystis species boundaries based on four molecular methods. @Babberwocky What is the greatest barrier to describing the Earth's fungal biodiversity? Or tweet your response @Babberwocky write your never [[ack of exploration of dosone niches] ENDO CENS #### Advertise yourself! #### Design A Poster Sketch a poster design Share your poster with a partner Share as a group # helpful #### Tools - PowerPoint - Canva - Inkscape - InDesign/Publisher ## Checkthe SIZE. ## Write a script and practice! #### Check for grammar and speling. # One poster per takeaway. #### Get feedback. Another pair of eyes will help you to catch any spelling errors and see any problems with the design. #### Questions? O questions O upvotes